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Estimate for regeneration up to the golden rule time 
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B-1050 BNsselS, Belgiim . 

Institute for Advanced Study, School of Natural Sciences Princeton, NJ 08540, USA 

Received 21 October 1992 

Abstract. We study the regeneration contribution 10 the decay law in Wiper-Weisskopf thew 
for times less than and up to the golden rule time. A power series expansion for the regeneration 
term and the p m  of the product of the amplitudes which has the semigroup propeny is c h e d  out 
in semnd-order penurbation theory, the same order to which the Wigner-Weisskopf calculation 
i s  carried out in their estimate of the tine widths in atomic decay. We show that the regeneration 
contribution has a smaller leading behaviour in f than the amplitudes at times of the order of 
the golden mb time, thus accounting for an approdnuue semigroup behaviour, on this scale, 
within the framework of the Wzgner-Weisskopf theory. For very short times, IkestimaIes Of 
Misra and Sinha are obtained 

In their historic paper [I] of 1930, Wigner and Weisskopf showed that the decay width of 
an unstable system appears linearly in the decay law in second-order perturbation theory, 
in the range of times for which the golden rule becomes valid. At the golden rule time, 
the O(t2) initial mode of unstable system decay disappears, and the system may enter 
what appears to be an exponentially dominated mode (the possible effects of this early 
time development have been studied quite extensively [Z]). The dynamics of the onss of 
approximate exponential decay, signalled by the appearance of the decay width in the work 
of Wigner and Weisskopf [l], should therefore be visible in the framework of second-order 
perturbation theory. 

In the method of Wigner and Weisskopf [I], the amplitude for the system to be found 
in the initial state 4 is 

where H is the total Hamiltonian of the system. If the evolution were semigroup, then A@) 
would satisfy the relation A(tI)A(fz) = A(t1 + t z ) .  An amplitude of the form (1) cannot, 
however, have this property exactly. We define the correction term as follows. Assuming 
that the Hilbert space is spanned by the discrete state @ (the unstable state) and a continuum 
{In)), A(tl +fz) is given by 

= A(ti)A(tz) + W i ,  fz) (2) 

$ Permanent address: College of Judea and Samaria, Ariel, and Department of Physics, Bai Dan University, Ramat 
Gan, Israel. 
I1 Permanent address: School of Physics, Raymond and Beverly Sackler Faculty of Exact Sciences. Tel Aviv 
University, Ramat Aviv, Israel; also at Department of Physics, Bar nan University, Ramat Gan, IsraeL 

0305-4470/93/133243+6$07.50 0 1993 IOP Publishing Lid ' 3243 



3244 I Anroniou et a1 

where the second term on the right-hand side 

is called the regenerarion term. This term does not depend on tl + t2, but on the times 
f l  , t2 separately. It corresponds to the non-Markovian part of the decay process; as seen 
from the formula (3). it contains the integral, over all A, of the product of the amplitude 
for transition. from @ to IA) (decay) over an interval f2 with the amplitude for the inverse 
transition (regeneration), to @ during the interval 11. 

To the extent that in the period of time for which the exponential behaviour dominates, 
A@) has an approximate semigroup property, the regeneration term should be small. Our 
purpose here is to study the behaviour of the regeneration term relative to that of the 
semigroup part A(tl + r2) of the product of the amplitudes. Since the onset of exponential 
decay indicates the development of an approximate semigroup behaviour, the regeneration 
term, which measures the deviation from semigroup behaviour, should diminish relative to 
the semigroup term. 

Even though the Wigner-Weisskopf mathematical description of the process, which we 
study, is based on a reversible description, the mechanism for the diminishing relative size of 
the regeneration term should shed some-light on the structure of the fundamental processes 
underlying exponential decay. 

As we have remarked above, the decay width emerges linearly in the Wigner-Weisskopf 
calculation in second-order perturbation theory. This corresponds to the fist non-trivial 
term of the Taylor expansion of the exponential decay law. For the times up to which this 
calculation is a good approximation (as' we shall see, essentially the golden rule time), this 
second-order approximation permits an examination of the decay law. In the same way, and 
with the same accuracy, second-order perturbation theory should permit the investigation of 
the regeneration effect In facti since we are interested in ah essentially qualitative property 
of unstable systems, in any actual computation, we can take the coupling constant (the scale 
of V) to be as small as we wish, and hence higher-order terms can be made arbitrarily small 
in the neighbourhood of the golden rule time. We therefore compute here the amplitude 
A(t) and the regeneration term in second-order perturbation theory. For a Hamiltonian of 
the form 

H = H o + V  (4) 

where V is the pedurbation inducing decay of the state 4, we may expand the solution of 
the interaction picture equation 

where V(r) = eiHorVe-'HO', as 

Further, assuming (@/VI@) = 0 (this contribution has only the effect of an energy shift), we 
obtain 

e"A(t) = e'"'(@, &) 
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and m is the discrete eigenvalue of Ho associated with the state 4. Retaining only the 
second-order term, we see that 

W(h) {e-i(A-m)t + e"'A(t) Z 1 + / dA ](A - m)t - 11. (A - m)Z 

We remark that an estimate for the golden rule time can be obtained directly from (8). 
The 'survival' probability to this order is 

The limit of large t in which this expression is h e a r  in t ,  i.e. the application of 

sin'xt - N irtA(X) x2 . . 

in which the trigonometric function with its quadratic &nominator can be taken as an 
effective &function times t ,  is determined by the rate of change of the function W(A), 
which acts as a test~function for the distribution. We know from (9) that for large t the 
contribution to the integral is from A in some small neighbourhood of m. In fact the golden 
rule time is estimated through the relation 

A - m 6 %It. (11) 

We wish to estimate A - m in terms of the variation of W(A). We therefore expand the 
function W(A) in the neighbourhood of small A - m 

W(A) Z W ( m )  + ( A  - m)W'(m). (12) 

The correction term is small for 

or, from (1  l), that 

providing an estimate of the golden rule time in terms of the variation of W ( Q  For [31 
W(A) o( one obtains, e.g. for p = 1/2m, 

(14) !CR 2 h / m .  . ~. 

As another example 
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leads to the same estimate. If W'(m) vanishes, instead of (12), we have 

W(A) W ( m )  + +(A - m)'W"(m) (15) 

and then 

For W(A) this case wcm, but then (16) provides the estimate 

We now turn to a parallel second-order expansion of the regeneration term. We obtain 
tOR 

an expression for this by computing the transition element {Ale-iHr[$) to first order, i.e., 

2rc/m, which is of the same order. 

Then, from (3), to second order/ 

(18) 

An upper bound is obtained by replacing the integrand by its absolute value, i.e. 

lR(t,t')l < 2 

or, equivalently 

(19) W(A) dA[(1 -cos@-m)t)(l -c~s(A-m)t ' ) ] '~  J (m - A)' 

(A -m)t . (A-m)t' W(A) 
sin 

2 2 (A--)'' IR(r, t')l < 4 dA sin J 
Note that for the transition t' -+ t' + t, for t' + the bound (20) is restricted by 

and hence 

IR(t, t')Ir+-rGR < t ~ W ( m ) .  

On the other hand, for t, t' small, we obtain the bound 

IR(t,t')l < r t ' / d w ~ ( ~ ) ~  

t Note that, from (9) and (181, IR(f. 1)l = 1 - IA(t)I*, hence i f  A ( f )  decreases, IR(r, r)l must increuse. 
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where the last estimate assumes W(A) decreasing sufficiently rapidly so that sin(A-m)t/2 - 
(A - m)t /2  is a good approximation for small t .   note that 1," W(A) cU = (AX)' is the 
'dispersion' of the full Hamiltonian in the state 4. 

The  bound (22) is in agreement with the results of Misra and Sinha 141, where it was 
proved that if the small t ,  t' behaviour is of the order of t V a  for a > 1 ,  then the semigroup 
property must hold exactly (and hence the regeneration term must vanish). 

We may obtain an estimate for larger times~by expanding A(t+t') and R ( t ,  t') in power 
series. The coefficients of powers of t ,  t' are the same set of numbers in each case, and we 
may therefore compare the two series directly. Consider the expansions of the second-order 
perturbation theory results of (8) iind (18) 

where 

ak = Ja. W(A)(A - m)a-z 2 o (25) 

We see that the leading powers o f t ,  t' in the semigroup part of the product A(t)A(t') 
precisely cancel in both the real and imaginary parts of R(t ,  t'). This mechanism causes a 
dominance of the semigroup property, i.e. a tendency towards the relative decrease of the 
regeneration contributions in the  neighbourhood of the golden rule time where &e leading 
powers in t ,  t' can be expected to dominate the contribution of each of the coefficients ak7 bk 
for each fixed t' (or t ) .  We estimate this effect for~small t' as follows. As we have pointed 
out above, one finds, in many interesting cases, toR - l / m .  The condition for dominance 
of the leading term in t for fixed t' in the (rapidly convergent) expansions (23). (24) is, for 
each k in the series, that 

t' << t / k .  (26) 

Since the regeneration series starts with the next to leading tem in powers o f t ,  the condition 
for the dominance of the varying paA of the semigroup over the regeneration term coincides 
with (26). i.e. for each k, the comparable terms in the expansion are in the ratio kt'lt. We 
note from (25) that ax. bk do not grow quickly ink if we assume that W(A) falls off qhckly 
above A - m; they are then approximately bounded by mk J"dA W(A). For example, for 
k < IO, the inequality (26) is satisfied for t' <( &tGR. Taking the k = 1 contribution, we 
have the estimate 

bk = J w(Aj(A - m)y-l. 

For~t,  i' both small, this bound is consistent with (22). (23). but we see that the bound 
remains valid for f up to the order of the golden rule time. We furthermore see that (in the 
shift from t' to t + t') the initial regeneration rate at t = 0 is given, from (24), by 
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which, for small f' is 

Hence, the initial regeneration rate for small f' reaches the bound (ZZ), and, as pointed out 
in [4,5], cannot be arbitrarily small. 

We have shown that there is a mechanism, in the framework of second-order petturbation 
theory, for the emergence of the semigroup law of decaying systems in the neighbourhood 
of times where the decay law enters, according to Wigner-Weisskopf theory, the linear onset 
of the exponentially dominated mode. It is actually a dynamical question, depending on 
the spectral function W(A) and the resulting coefficients [uk, &}, whether the exponential 
mode emerges as dominant at the golden rule time. We have seen, however, that the 
leading powers of the regeneration term suffer a cancellation that can cause dominance of 
the approximate semigroup property. This bound has been demonstrated for (non-vanishing) 
values of t '  small compared to the golden rule time tGR, and for t of the order of tcR. Our 
bound agrees with results of Misra and Sinha [4] for small t ,  t', but extends the analysis 
up to the order of the onset of the approximate exponential decay. A further study of the 
physical origin of this cancellation would be of interest in obtaining more insight into the 
mechanism of the decay process. 
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